Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3271, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627373

RESUMO

Selective binding of TCR-like antibodies that target a single tumour-specific peptide antigen presented by human leukocyte antigens (HLA) is the absolute prerequisite for their therapeutic suitability and patient safety. To date, selectivity assessment has been limited to peptide library screening and predictive modeling. We developed an experimental platform to de novo identify interactomes of TCR-like antibodies directly in human tissues using mass spectrometry. As proof of concept, we confirm the target epitope of a MAGE-A4-specific TCR-like antibody. We further determine cross-reactive peptide sequences for ESK1, a TCR-like antibody with known off-target activity, in human liver tissue. We confirm off-target-induced T cell activation and ESK1-mediated liver spheroid killing. Off-target sequences feature an amino acid motif that allows a structural groove-coordination mimicking that of the target peptide, therefore allowing the interaction with the engager molecule. We conclude that our strategy offers an accurate, scalable route for evaluating the non-clinical safety profile of TCR-like antibody therapeutics prior to first-in-human clinical application.


Assuntos
Anticorpos , Peptídeos , Humanos , Linhagem Celular Tumoral , Peptídeos/química , Antígenos de Neoplasias , Receptores de Antígenos de Linfócitos T/metabolismo
2.
Immunohorizons ; 7(12): 872-885, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38147032

RESUMO

Our bodies are home to individual-specific microbial ecosystems that have recently been found to be modified by cancer immunotherapies. The interaction between the gut microbiome and islet autoimmunity leading to type I diabetes (T1D) is well described and highlights the microbiome contribution during the onset and T1D development in animals and humans. As cancer immunotherapies induce gut microbiome perturbations and immune-mediated adverse events in susceptible patients, we hypothesized that NOD mice can be used as a predictive tool to investigate the effects of anti-PD-1 treatment on the onset and severity of T1D, and how microbiota influences immunopathology. In this longitudinal study, we showed that anti-PD-1 accelerated T1D onset, increased glutamic acid decarboxylase-reactive T cell frequency in spleen, and precipitated destruction of ß cells, triggering high glucose levels and pancreatic islet reduction. Anti-PD-1 treatment also resulted in temporal microbiota changes and lower diversity characteristic of T1D. Finally, we identified known insulin-resistance regulating bacteria that were negatively correlated with glucose levels, indicating that anti-PD-1 treatment impacts the early gut microbiota composition. Moreover, an increase of mucin-degrading Akkermansia muciniphila points to alterations of barrier function and immune system activation. These results highlight the ability of microbiota to readily respond to therapy-triggered pathophysiological changes as rescuers (Bacteroides acidifaciens and Parabacteroides goldsteinii) or potential exacerbators (A. muciniphila). Microbiome-modulating interventions may thus be promising mitigation strategies for immunotherapies with high risk of immune-mediated adverse events.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Microbioma Gastrointestinal , Inibidores de Checkpoint Imunológico , Animais , Humanos , Camundongos , Glucose , Estudos Longitudinais , Camundongos Endogâmicos NOD , Neoplasias , Inibidores de Checkpoint Imunológico/efeitos adversos , Inibidores de Checkpoint Imunológico/farmacologia
3.
Proc Natl Acad Sci U S A ; 120(35): e2305322120, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37603766

RESUMO

T cell bispecific antibodies (TCBs) are the focus of intense development for cancer immunotherapy. Recently, peptide-MHC (major histocompatibility complex)-targeted TCBs have emerged as a new class of biotherapeutics with improved specificity. These TCBs simultaneously bind to target peptides presented by the polymorphic, species-specific MHC encoded by the human leukocyte antigen (HLA) allele present on target cells and to the CD3 coreceptor expressed by human T lymphocytes. Unfortunately, traditional models for assessing their effects on human tissues often lack predictive capability, particularly for "on-target, off-tumor" interactions. Here, we report an immune-infiltrated, kidney organoid-on-chip model in which peripheral blood mononuclear cells (PBMCs) along with nontargeting (control) or targeting TCB-based tool compounds are circulated under flow. The target consists of the RMF peptide derived from the intracellular tumor antigen Wilms' tumor 1 (WT1) presented on HLA-A2 via a bivalent T cell receptor-like binding domain. Using our model, we measured TCB-mediated CD8+ T cell activation and killing of RMF-HLA-A2-presenting cells in the presence of PBMCs and multiple tool compounds. DP47, a non-pMHC-targeting TCB that only binds to CD3 (negative control), does not promote T cell activation and killing. Conversely, the nonspecific ESK1-like TCB (positive control) promotes CD8+ T cell expansion accompanied by dose-dependent T cell-mediated killing of multiple cell types, while WT1-TCB* recognizing the RMF-HLA-A2 complex with high specificity, leads solely to selective killing of WT1-expressing cells within kidney organoids under flow. Our 3D kidney organoid model offers a platform for preclinical testing of cancer immunotherapies and investigating tissue-immune system interactions.


Assuntos
Anticorpos Biespecíficos , Humanos , Antígeno HLA-A2 , Leucócitos Mononucleares , Rim , Organoides
4.
Cell Stem Cell ; 29(6): 905-917.e6, 2022 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-35508177

RESUMO

Patient-derived xenografts (PDXs) and patient-derived organoids (PDOs) have been shown to model clinical response to cancer therapy. However, it remains challenging to use these models to guide timely clinical decisions for cancer patients. Here, we used droplet emulsion microfluidics with temperature control and dead-volume minimization to rapidly generate thousands of micro-organospheres (MOSs) from low-volume patient tissues, which serve as an ideal patient-derived model for clinical precision oncology. A clinical study of recently diagnosed metastatic colorectal cancer (CRC) patients using an MOS-based precision oncology pipeline reliably assessed tumor drug response within 14 days, a timeline suitable for guiding treatment decisions in the clinic. Furthermore, MOSs capture original stromal cells and allow T cell penetration, providing a clinical assay for testing immuno-oncology (IO) therapies such as PD-1 blockade, bispecific antibodies, and T cell therapies on patient tumors.


Assuntos
Neoplasias do Colo , Medicina de Precisão , Neoplasias do Colo/patologia , Humanos , Imunoterapia , Organoides/patologia
5.
Blood ; 138(25): 2655-2669, 2021 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-34280257

RESUMO

Antibody-based immunotherapy is a promising strategy for targeting chemoresistant leukemic cells. However, classical antibody-based approaches are restricted to targeting lineage-specific cell surface antigens. By targeting intracellular antigens, a large number of other leukemia-associated targets would become accessible. In this study, we evaluated a novel T-cell bispecific (TCB) antibody, generated by using CrossMAb and knob-into-holes technology, containing a bivalent T-cell receptor-like binding domain that recognizes the RMFPNAPYL peptide derived from the intracellular tumor antigen Wilms tumor protein (WT1) in the context of HLA-A*02. Binding to CD3ε recruits T cells irrespective of their T-cell receptor specificity. WT1-TCB elicited antibody-mediated T-cell cytotoxicity against AML cell lines in a WT1- and HLA-restricted manner. Specific lysis of primary acute myeloid leukemia (AML) cells was mediated in ex vivo long-term cocultures by using allogeneic (mean ± standard error of the mean [SEM] specific lysis, 67 ± 6% after 13-14 days; n = 18) or autologous, patient-derived T cells (mean ± SEM specific lysis, 54 ± 12% after 11-14 days; n = 8). WT1-TCB-treated T cells exhibited higher cytotoxicity against primary AML cells than an HLA-A*02 RMF-specific T-cell clone. Combining WT1-TCB with the immunomodulatory drug lenalidomide further enhanced antibody-mediated T-cell cytotoxicity against primary AML cells (mean ± SEM specific lysis on days 3-4, 45.4 ± 9.0% vs 70.8 ± 8.3%; P = .015; n = 9-10). In vivo, WT1-TCB-treated humanized mice bearing SKM-1 tumors exhibited a significant and dose-dependent reduction in tumor growth. In summary, we show that WT1-TCB facilitates potent in vitro, ex vivo, and in vivo killing of AML cell lines and primary AML cells; these results led to the initiation of a phase 1 trial in patients with relapsed/refractory AML (#NCT04580121).


Assuntos
Anticorpos Biespecíficos/uso terapêutico , Antineoplásicos Imunológicos/uso terapêutico , Leucemia Mieloide Aguda/tratamento farmacológico , Peptídeos/uso terapêutico , Proteínas WT1/imunologia , Animais , Anticorpos Biespecíficos/farmacologia , Antineoplásicos Imunológicos/farmacologia , Linhagem Celular Tumoral , Antígeno HLA-A2/imunologia , Humanos , Leucemia Mieloide Aguda/imunologia , Camundongos , Peptídeos/farmacologia , Receptores de Antígenos de Linfócitos T/imunologia , Linfócitos T Citotóxicos/efeitos dos fármacos , Linfócitos T Citotóxicos/imunologia , Células Tumorais Cultivadas
6.
J Immunother Cancer ; 9(7)2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34326166

RESUMO

BACKGROUND: T cell engagers are bispecific antibodies recognizing, with one moiety, the CD3ε chain of the T cell receptor and, with the other moiety, specific tumor surface antigens. Crosslinking of CD3 upon simultaneous binding to tumor antigens triggers T cell activation, proliferation and cytokine release, leading to tumor cell killing. Treatment with T cell engagers can be associated with safety liabilities due to on-target on-tumor, on-target off-tumor cytotoxic activity and cytokine release syndrome (CRS). Tyrosine kinases such as SRC, LCK or ZAP70 are involved in downstream signaling pathways after engagement of the T cell receptor and blocking these kinases might serve to abrogate T cell activation when required (online supplemental material 1). Dasatinib was previously identified as a potent kinase inhibitor that switches off CAR T cell functionality. METHODS: Using an in vitro model of target cell killing by human peripheral blood mononuclear cells, we assessed the effects of dasatinib combined with 2+1 T cell bispecific antibodies (TCBs) including CEA-TCB, CD19-TCB or HLA-A2 WT1-TCB on T cell activation, proliferation and target cell killing measured by flow cytometry and cytokine release measured by Luminex. To determine the effective dose of dasatinib, the Incucyte system was used to monitor the kinetics of TCB-mediated target cell killing in the presence of escalating concentrations of dasatinib. Last, the effects of dasatinib were evaluated in vivo in humanized NSG mice co-treated with CD19-TCB. The count of CD20+ blood B cells was used as a readout of efficacy of TCB-mediated killing and cytokine levels were measured in the serum. RESULTS: Dasatinib concentrations above 50 nM prevented cytokine release and switched off-target cell killing, which were subsequently restored on removal of dasatinib. In addition, dasatinib prevented CD19-TCB-mediated B cell depletion in humanized NSG mice. These data confirm that dasatinib can act as a rapid and reversible on/off switch for activated T cells at pharmacologically relevant doses as they are applied in patients according to the label. CONCLUSION: Taken together, we provide evidence for the use of dasatinib as a pharmacological on/off switch to mitigate off-tumor toxicities or CRS by T cell bispecific antibodies.


Assuntos
Anticorpos Biespecíficos/metabolismo , Antineoplásicos/uso terapêutico , Citocinas/metabolismo , Dasatinibe/uso terapêutico , Receptores de Antígenos de Linfócitos T/metabolismo , Animais , Antineoplásicos/farmacologia , Dasatinibe/farmacologia , Humanos , Camundongos
7.
Clin Cancer Res ; 27(22): 6083-6094, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34162679

RESUMO

T-cell-redirecting therapies are promising new therapeutic options in the field of cancer immunotherapy, but the development of these modalities is challenging. A commonly observed adverse event in patients treated with T-cell-redirecting therapies is cytokine release syndrome (CRS). Its clinical manifestation is a burden on patients, and continues to be a big hurdle in the clinical development of this class of therapeutics. We review different T-cell-redirecting therapies, discuss key factors related to cytokine release and potentially leading to CRS, and present clinical mitigation strategies applied for those modalities. We propose to dissect those risk factors into drug-target-disease-related factors and individual patient risk factors. Aiming to optimize the therapeutic intervention of these modalities, we illustrate how the knowledge on drug-target-disease-related factors, such as target expression, binding affinity, and target accessibility, can be leveraged in a model-based framework and highlight with case examples how modeling and simulation is applied to guide drug discovery and development. We draw attention to the current gaps in predicting the individual patient's risk towards a high-grade CRS, which requires further considerations of risk factors related, but not limited to, the patient's demographics, genetics, underlying pathologies, treatment history, and environmental exposures. The drug-target-disease-related factors together with the individual patient's risk factors can be regarded as the patient's propensity for developing CRS in response to therapy. As an outlook, we suggest implementing a risk scoring system combined with mechanistic modeling to enable the prediction of an individual patient's risk of CRS for a given therapeutic intervention.


Assuntos
Síndrome da Liberação de Citocina/etiologia , Síndrome da Liberação de Citocina/metabolismo , Suscetibilidade a Doenças , Linfócitos T/imunologia , Linfócitos T/metabolismo , Animais , Biomarcadores , Síndrome da Liberação de Citocina/diagnóstico , Síndrome da Liberação de Citocina/terapia , Citocinas/genética , Citocinas/metabolismo , Desenvolvimento de Medicamentos , Regulação da Expressão Gênica , Humanos , Terapia de Alvo Molecular , Linfócitos T/efeitos dos fármacos , Resultado do Tratamento
8.
Nat Cancer ; 1(12): 1153-1166, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33644766

RESUMO

Intratumoral regulatory T cell (Treg) abundance associates with diminished anti-tumor immunity and poor prognosis in human cancers. Recent work demonstrates that CD25, the high affinity receptor subunit for IL-2, is a selective target for Treg depletion in mouse and human malignancies; however, anti-human CD25 antibodies have failed to deliver clinical responses against solid tumors due to bystander IL-2 receptor signaling blockade on effector T cells, which limits their anti-tumor activity. Here we demonstrate potent single-agent activity of anti-CD25 antibodies optimized to deplete Tregs whilst preserving IL-2-STAT5 signaling on effector T cells, and demonstrate synergy with immune checkpoint blockade in vivo. Pre-clinical evaluation of an anti-human CD25 (RG6292) antibody with equivalent features demonstrates, in both non-human primates and humanized mouse models, efficient Treg depletion with no overt immune-related toxicities. Our data supports the clinical development of RG6292 and evaluation of novel combination therapies incorporating non-IL-2 blocking anti-CD25 antibodies in clinical studies.


Assuntos
Interleucina-2 , Neoplasias , Animais , Anticorpos Monoclonais/farmacologia , Interleucina-2/farmacologia , Camundongos , Transdução de Sinais , Linfócitos T Reguladores
9.
MAbs ; 10(1): 1-17, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28991509

RESUMO

Monoclonal antibodies (mAbs) are improving the quality of life for patients suffering from serious diseases due to their high specificity for their target and low potential for off-target toxicity. The toxicity of mAbs is primarily driven by their pharmacological activity, and therefore safety testing of these drugs prior to clinical testing is performed in species in which the mAb binds and engages the target to a similar extent to that anticipated in humans. For highly human-specific mAbs, this testing often requires the use of non-human primates (NHPs) as relevant species. It has been argued that the value of these NHP studies is limited because most of the adverse events can be predicted from the knowledge of the target, data from transgenic rodents or target-deficient humans, and other sources. However, many of the mAbs currently in development target novel pathways and may comprise novel scaffolds with multi-functional domains; hence, the pharmacological effects and potential safety risks are less predictable. Here, we present a total of 18 case studies, including some of these novel mAbs, with the aim of interrogating the value of NHP safety studies in human risk assessment. These studies have identified mAb candidate molecules and pharmacological pathways with severe safety risks, leading to candidate or target program termination, as well as highlighting that some pathways with theoretical safety concerns are amenable to safe modulation by mAbs. NHP studies have also informed the rational design of safer drug candidates suitable for human testing and informed human clinical trial design (route, dose and regimen, patient inclusion and exclusion criteria and safety monitoring), further protecting the safety of clinical trial participants.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Avaliação Pré-Clínica de Medicamentos/métodos , Primatas , Animais , Anticorpos Monoclonais/efeitos adversos , Qualidade de Produtos para o Consumidor , Humanos , Modelos Animais , Medição de Risco , Fatores de Risco , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...